ε(2)=∑(n=1…∞)(-1)n-1/(2n-1)2 =0.919565594177219015054603514932…… =∫(0,1)(1/x)arctan(x)dx =2∫(0,π/4)lncos(x)dx+(π/2)ln2 =(-2)∫(0,π/4)lnsin(x)dx-(π/2)ln2 =(1/2)∫(0,π/2)[x/sin(x)]dx =(π/2)∫(0,1)[1/(1+x2)2][(x2-1)/ln(x)]dx 卡特兰常数ε(2)
|
|
来自: toujingshuxue > 《数学》