1.(2017·苏州中考)如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A′E′F′.设P、P′分别是EF、E′F′的中点,当点A′与点B重合时,四边形PP′CD的面积为( ) A.28√3 B.24√3 C.32√3 D.32√3-8 1题图 2.(2017·北京中考)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程. 证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(______________+______________). 易知S△ADC=S△ABC,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF. 2题图 3.(2017·兰州中考)如图①,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F. (1)求证:△BDF是等腰三角形; (2)如图②,过点D作DG∥BE,交BC于点G,连接FG交BD于点O. ①判断四边形BFDG的形状,并说明理由; ②若AB=6,AD=8,求FG的长. 4.(2017·通辽中考)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作……依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图①,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形. (1)猜想与计算:邻边长分别为3和5的平行四边形是________阶准菱形;已知▱ABCD的邻边长分别为a,b(a>b),满足a=8b+r,b=5r,请写出▱ABCD是________阶准菱形; (2)操作与推理:小明为了剪去一个菱形,进行了如下操作:如图②,把▱ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F处,得到四边形ABFE.求证:四边形ABFE是菱形. 4题图 答案 |
|
来自: 昵称32937624 > 《待分类》