有理数的概念 一、知识要点 1、正数和负数 (1)、大于0的数叫做正数。 (2)、在正数前面加上负号“-”的数叫做负数。 (3)、数0既不是正数,也不是负数,0是正数与负数的分界。 (4)、在同一个问题中,分别用正数与负数表示的量具有相反的意义。 2、有理数 (1)凡能写成分数形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a不一定是负数,如:-(-2)=4,这个时候的a=-2。p不是有理数; 3、数轴 (1)、用一条直线上的点表示数,这条直线叫做数轴。它满足以下要求: ① 在直线上任取一个点表示数0,这个点叫做原点; ② 通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向; ③ 选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示 1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3… (2)、数轴的三要素:原点、正方向、单位长度。 (3)、画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。数轴的规范画法:是条直线,数字在下,字母在上。 (4)、一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。 4、相反数 (1)、只有符号不同的两个数叫做互为相反数。 ① 注意:a的相反数是-a;a-b的相反数是b-a;a+b的相反数是-(a+b)=-a-b; ② 非零数的相反数的商为-1; ③ 相反数的绝对值相等。 (2)、一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的两侧,表示a和-a,我们说这两点关于原点对称。 (3)、a和-a互为相反数。0的相反数是0,正数的相反数是负数,负数的相反数是正数。 (4)、在任意一个数前面添上“-”号,新的数就表示原数的相反数。 (5)、若两个数a、b互为相反数,就可以得到a+b=0;反过来若a+b=0,则a、b互为相反数。 (6)、多重符号的相乘由“-”的个数来定:若“-”的个数为偶数,相乘结果为正数;若“-“的个数为奇数,化简结果为负数。比如:-2×4×(-3)×(-1)×(-5),首先4个负号,所以最终结果是正数,再算数字相乘得到120 5、绝对值 (1)、绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。 (2)、正数的绝对值等于它本身;0的绝对值是0(或者说0的绝对值是它本身,或者说0的绝对值是它的相反数);负数的绝对值等于它的相反数;(注意:绝对值的意义是数轴上表示某数的点离开原点的距离;)。0是绝对值最小的数。 |
|