分享

数学的意义(2)

 一个大风子 2022-08-16 发布于黑龙江

数学的意义

此讲座试图从一些角度,包括数学是怎样发展起来的,数学的一些特性,一些伟人的观点,数学美的一些含义等,阐述数学的意义”——席南华(中国科学院院士、中国科学院数学与系统科学研究院研究员)

图片

内容来源:中国数学会

      谢谢主持人的介绍,我今天要说的是“数学的意义”。

      数学,要说爱你不容易,不管你是天才还是庸人,都是它虐待的对象,差别在于有人在这虐待的过程中得到快乐,但大部分人得到的是痛苦。痛苦的一个根源是其实我们并不认识它,撇开我们在与数学打交道的过程中的不愉快或愉快,今天让我们从另一个角度、一个轻松的带着喝下午茶的心情,带着一个旁观者的心态,来看一看数学的意义

     席南华院士:数学的意义(1)
数学的独特贡献:认识无限
      简单地谈一下历史之后,我们应该说数学了。数学应该是从数(shǔ)数(shù)开始的,我们有谁不会数数呢?在幼儿园里的孩子都会1、2、3……这么数下去。一般孩子数到100,可能他的爸爸妈妈就让他过去了。不过有些望子成龙的家长可能会让他一直数到N,数到一个抽象的N。一般可能想不到用正整数把所有整数都数一数,其实这是可能的,一个数法就是从零开始,然后一个负数一个正数、一个负数一个正数,结果就把整数这么一个个排下去了。这件事情有点意思,也说明数数好像没有那么简单。

     接下来我们就可能会想着用正整数去数有理数,刚开始看这似乎是不可能的一件事情,但出人意料这也是可能的。有理数是两个整数的比,当然前面还有一个正负号,我们可以要求这个分子分母没有大于1的公因子,把分子分母都加起来,先按这个值大小分成若干部分,这时可以用整数去数。然后对于固定的和,这里的有理数肯定是有限的,那这部分又能数。这样操作下去之后,结果发现有理数也能数,从零开始,然后接下来就是分子分母都是1的数,只有1和负1;那分子分母加起来是3的时候,那就是1/2,2,-1/2,-2;加起来是4的时候就是1/3,3,-1/3,-3等等。这个样子就把有理数全部都数下去了,这应该说数数还是非常有意思的一件事情。

     那接下来你可能想继续用整数来数实数,但很遗憾,实数确实没办法用整数来数。这显示出实数和有理数、整数之间,从无穷的观点来看,它是有巨大差别的。而且有理数虽然看起来乱糟糟,我们还是能够把它数清楚,但实数我们做不到这一点。证明并不难,我们这里不用去管它了。

      这里马上就会产生一个问题,在自然数全体和实数全体之间有没有一个数的集合,它一方面没有办法数,或者说我们不能像整数那样数下去;另一方面它和实数全体也不一样多,也就是说你不能和实数集建立一一对应,一一对应通俗的语言说来就是旗鼓相当,数学的语言就是等式,就是势力相等的意思。这个问题看起来很自然,问的就是像在1和2之间有没有整数一样。不过大家可能意识不到的事情是,这个问题在数学里面是特别重要的一个问题,一个很基础的问题。

图片

                          康托                            

      康托是集合论的创始人,他提出这样一个假设——连续统假设,说这样的集合没有。大家可能知道,在1900年国际数学大会上,伟大的数学家希尔伯特提了23个问题,这23个问题中的第一个问题就是连续统假设,可见这个问题在数学中的重要性。数学家们花了很大的力气来研究它。哥德尔,伟大的奥地利数学逻辑学家,他在1940年就证明了连续统假设和我们现在这个逻辑体系是没有矛盾的,没有矛盾还不能说它对。又过了23年到1963年,一位美国数学家科恩,他发明了一种非常有的办法,叫做力迫法,证明这个结论否定的一面和我们现在的逻辑体系也是没有矛盾的。这个事情就变得诡异起来了,换句话说这么简单自然的一个问题,在逻辑上来讲,我们证明不了它是对或者错,就像在我们日常生活中一句话一样:“说你行你就行,说你不行你就不行”,这让我们对逻辑产生了很奇怪的感觉,原来它也有它不能的时候。科恩因为这项工作,在1966年获得了菲尔兹奖。在取得了这项伟大的成就之后,他心气高昂,觉得数学里面没什么问题值得他研究,除了有一个问题叫黎曼猜想——数学里面最著名的一个问题。科恩后来的余生就致力于研究黎曼猜想,他这个心劲有点类似于我们古代唐诗所描述的境界“曾经沧海难为水”。很可惜,科恩已经去世了,黎曼猜想还依然活着,谁也没办法证明它。

      在这个地方我们可以看出来,逻辑实际上比我们想的诡异的多,很多时候我们对它的认识可能还不那么透彻。关于逻辑我愿意在这里再多说一点点,一般人对于数学的逻辑都非常有信心,不仅数学家相信,物理学家相信,一般老百姓也相信。但随着我们对数学的认识不断的加深的时候,就有很多的悖论,包括罗素的悖论等等。这些悖论也就意味着数学的逻辑不像我们平时想得那样无所不能、无所不利。我们能做的事就是给它建立一个很坚实的基础,比如这个世界有狼,那我们就圈一块地,把狼赶到外面去,然后在圈里面放羊。把数学就建立在这个领域,这个大厦就非常牢固了。数学家对这个努力的方向是非常乐观的,罗素怀特海就写过数学原理三大本书,试图来做这件事情。罗素是一位非常杰出的数学家,数学家拿诺贝尔奖的人很多,但是这位数学家是通过文学拿的诺贝尔奖,实际他是通过这三本书——《数学原理》拿的诺贝尔奖。据说当时正好在诺贝尔奖评选委员会里,有一个人对他这项工作很了解,结果就颁给他了。拿诺贝尔奖文学奖的数学家目前只有一个。

      伟大的数学家希尔伯特对这样一个努力的方向也非常的乐观,认为我们一定能够做到这一点,我们必须做到,也将会做到。但他这种乐观的话说出来之后,朗朗的笑声没有多久,在1931年,哥德尔,还是这个哥德尔,他就证明了两个不完备性定理。第一个定理说,如果你的公里体系包含算术公里体系,就是我们最常用的体系,因为我们总要处理整数、算术这些东西,如果包含这个体系了,必然会有一个命题是没法判断它的正确与否的。就像我们刚才提到的一样。歌德尔这个构造还要简单一些,那是更早完成的。另一个不完备定理说,如果有一个公里体系包含了这个算术公理体系,那么它的不完备性是不能够由自身证明的。就像在法庭上你不能自证清白。这对希尔伯特的形式化纲领是一个致命的打击,也宣告他的形式化纲领是不可能实现的。希尔伯特得知这个消息后当然非常的沮丧,更遭的是那个冬天,他还把腿给摔断了,这显然是一个不祥之兆。
     从数数引发出来的问题,我们可以看到逻辑的诡异性,也揭示了我们认知上的局限性。

      数理逻辑还和计算机科学是密切相关的,计算机科学能做到哪一步,哪些地方不能做,这个界限有时候还不是特别的清楚。但是我们通过数理逻辑知道有些东西做不了,还有很多东西能做不能做我们并不知道,比如P和NP问题等等,它反应了一些诡异的东西。哥德尔这项工作不仅在数学界里面,而且在哲学界里面都产生了巨大的影响,他实质上和我们的常识或者是一般所想的差的太远了。在上个世纪70年代有一本书,是获得美国普利策奖的,书名就是《G.E.B》——一条永恒的金带。这个G就是哥德尔;E就是埃舍尔,一位荷兰的画家;B就是音乐家巴赫。他把哥德尔的不完备性定理和埃舍尔的绘画以及巴赫的音乐给联系起来。你在看埃舍尔绘画的时候也是很有意思的,它在整个局部上都是非常合理的:水不断地往高处流,结果最后整体上看它流到原来地方,或者甚至比原来更低的地方。巴赫的音乐也是,有时候听了你会感觉到它不断的深厚,结果回到原来的地方。那本书就揭示了这中间的一些联系,是一本很有影响的书。我们国内也有翻译。埃舍尔的画科学家也很感兴趣,因为它揭示了一些非常奇怪的矛盾现象。印象中间像杨振宁写的《基本粒子发现简史》里面就有一幅插图,是用了埃舍尔的绘画。

图片

埃舍尔绘画作品《瀑布》
      在我们有限的生命里面,要认识无限,似乎是一件困难的事情,甚至可能是一件让人不安的事情。在古诗里面就说了“生年不满百,常怀千岁忧”,这就表明我们并不甘心局限于自己有限的时空。但无限是令人敬畏的,帕斯卡说过:“当我想到我生命的短暂停留,被前后的永恒所吞噬,我所占据的小小空间,被我也一无所知的无限广阔的空间所淹没,我感到恐惧,这些无边无际的空间的永恒的寂静使我害怕。”在数数的游戏中间,我们就感受到了整数的无穷和实数的无穷的差别。数学非常重要的一个作用是能够认识无限,这是别的学科做不到的。你没有看到任何其他的学科能够做这件事情,哲学讨论无限,讨论不出个所以然,只有数学能够研究无限,这是它神奇的地方。我们利用无限还可以研究有限,例子包括极限、级数、无限集合等等。在无限里面也有差别,我们刚才已经看到了整数的无限和实数的无限的差别,在数学里面专门有个分支研究这种差别,那就是集合论。

      对于无限,希尔伯特的认识是非常深刻的,他说:“没有其他的问题能够如此深刻的触动人的精神;也没有其他的思想能如此富有成果地激发人的思想逻辑领悟力;然而也没有其他的概念比无限的概念更需要澄清”。我们常常有个朴素的想法,希望长生不老,其实是跟无穷联系在一起的。 

图  文:小  修

    本站是提供个人知识管理的网络存储空间,所有内容均由用户发布,不代表本站观点。请注意甄别内容中的联系方式、诱导购买等信息,谨防诈骗。如发现有害或侵权内容,请点击一键举报。
    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多