分享

2024年高考数学一轮复习(新高考版) 第3章 §3-7 利用导数研究函数的零点

 中小学知识学堂 2023-06-29 发布于云南

§3.7 利用导数研究函数的零点

考试要求 函数零点问题在高考中占有很重要的地位,主要涉及判断函数零点的个数或范围.高考常考查三次函数与复合函数的零点问题,以及函数零点与其他知识的交汇问题,一般作为解答题的压轴题出现.

题型一 利用函数性质研究函数的零点

1 已知函数f(x)xsin x1.

(1)讨论函数f(x)在区间上的单调性;

(2)证明:函数yf(x)[0π]上有两个零点.

(1)解 因为函数f(x)的定义域为R

f(x)=-xsin(x)1f(x),所以函数f(x)为偶函数,

f(x)sinxxcos x,且当x时,f(x)0,所以函数f(x)上单调递增,又函数f(x)为偶函数,所以f(x)上单调递减,

综上,函数f(x)上单调递增,在上单调递减.

(2)证明 (1)得,f(x)上单调递增,又f(0)=-1<0f 1>0,所以f(x)内有且只有一个零点,

x时,令g(x)f(x)sinxxcos x

g(x)2cosxxsin x,当x时,g(x)<0恒成立,即g(x)上单调递减,又g1>0g(π)=-π<0,则存在m,使得g(m)0

且当x时,g(x)>g(m)0,即f(x)>0,则f(x)上单调递增,

x(mπ]时,有g(x)<g(m)0,即f(x)<0,则f(x)(mπ]上单调递减,

f 1>0f(π)=-1<0,所以f(x)(mπ]上有且只有一个零点,

综上,函数yf(x)[0π]上有2个零点.

思维升华 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.

跟踪训练1 (2023·芜湖模拟)已知函数f(x)ax(a1)ln x+-2aR.

(1)讨论f(x)的单调性;

(2)f(x)只有一个零点,求a的取值范围.

解 (1)函数f(x)的定义域为(0,+)f(x)a

a0,则f(x)<0f(x)(0,+)上单调递减;

a>0,则当x时,f(x)<0f(x)单调递减,当x时,f(x)>0f(x)单调递增.

综上,当a0时,f(x)(0,+)上单调递减;当a>0时,f(x)上单调递减,在上单调递增.

(2)a01ae2ae1>0f(1)a1<0.

结合函数的单调性可知,f(x)有唯一零点.

a>0,因为函数在上单调递减,在上单调递增,所以要使得函数有唯一零点,只需f(x)minf 1(a1)lnaa2(a1)(1lna)0,解得a1ae.

综上,a0a1ae.

题型二 数形结合法研究函数的零点

2 (2023·郑州质检)已知函数f(x)exax2aaR.

(1)讨论函数f(x)的单调性;

(2)求函数f(x)的零点个数.

解 (1)f(x)exax2a,定义域为R,且f(x)exa

a0时,f(x)>0,则f(x)R上单调递增;当a>0时,令f(x)0,则xln a

x<ln a时,f(x)<0f(x)单调递减;当x>ln a时,f(x)>0f(x)单调递增.

综上所述,当a0时,f(x)R上单调递增;

a>0时,f(x)(lna)上单调递减,在(ln a,+)上单调递增.

(2)f(x)0,得exa(x2)

a0时,exa(x2)无解,f(x)无零点,

a0时,

φ(x)xRφ(x)

x(3)时,φ(x)>0

x(3,+)时,φ(x)<0

φ(x)(3)上单调递增,在(3,+)上单调递减,且φ(x)maxφ(3)

x时,φ(x)0

x时,φ(x)

φ(x)的图象如图所示.

>,即0<a<e3时,f(x)无零点;

,即ae3时,f(x)有一个零点;

0<<,即a>e3时,f(x)有两个零点;

<0,即a<0时,f(x)有一个零点.

综上所述,当a[0e3)时,f(x)无零点;当a(0){e3}时,f(x)有一个零点;当a(e3,+)时,f(x)有两个零点.

思维升华 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x表示参数的函数,作出该函数的图象,根据图象特征求参数的范围或判断零点个数.

跟踪训练2 (2023·长沙模拟)已知函数f(x)aln x2.

(1)a2,求曲线yf(x)x1处的切线方程;

(2)若函数f(x)(0,16]上有两个零点,求a的取值范围.

解 (1)a2时,f(x)2ln x2,该函数的定义域为(0,+)f(x)

f(1)=-2f(1)1

因此,曲线yf(x)x1处的切线方程为y2x1,即xy30.

(2)a0时,f(x)<0

f(x)(0,+)上单调递减,不符合题意;

a>0时,由f(x)aln x20可得

g(x),其中x>0,则直线y与曲线yg(x)的图象在(0,16]内有两个交点,

g(x)

g(x)0,可得xe2<16,列表如下,

x

(0e2)

e2

(e216]

g(x)

0

g(x)

极大值

所以函数g(x)在区间(0,16]上的极大值为g(e2),且g(16)ln 2,作出g(x)的图象如图所示.

由图可知,当ln 2<

e<a时,

直线y与曲线yg(x)的图象在(0,16]内有两个交点,

f(x)(0,16]上有两个零点,

因此,实数a的取值范围是.

题型三 构造函数法研究函数的零点

3 (12)(2022·新高考全国)已知函数f(x)exaxg(x)axln x有相同的最小值.

(1)a[切入点:求f(x)g(x)的最小值]

(2)证明:存在直线yb,其与两条曲线yf(x)yg(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.

[关键点:利用函数的性质与图象判断exxbxlnxb的解的个数及解的关系]

思维升华 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间内的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.

跟踪训练3 (2021·全国甲卷)已知a>0a1,函数f(x)(x>0)

(1)a2时,求f(x)的单调区间;

(2)若曲线yf(x)与直线y1有且仅有两个交点,求a的取值范围.

解 (1)a2时,f(x)(x>0)

f(x)(x>0)

f(x)>0,则0<x<,此时函数f(x)单调递增,

f(x)<0,则x>,此时函数f(x)单调递减,

所以函数f(x)的单调递增区间为,单调递减区间为.

(2)曲线yf(x)与直线y1有且仅有两个交点,

可转化为方程1(x>0)有两个不同的解,即方程有两个不同的解.

g(x)(x>0),则g(x)(x>0)

g(x)0,得xe

0<x<e时,g(x)>0,函数g(x)单调递增,

x>e时,g(x)<0,函数g(x)单调递减,

g(x)maxg(e)

且当x>e时,g(x)

g(1)0,所以0<<,所以a>1ae

a的取值范围为(1e)(e,+)

课时精练

1(2023·济南质检)已知函数f(x)=,aR.

(1)a0,求f(x)的最大值;

(2)0<a<1,求证:f(x)有且只有一个零点.

(1)解 a0,则f(x),其定义域为(0,+)

f(x)

f(x)0,得xe

0<x<e时,f(x)>0;当x>e时,f(x)<0

f(x)(0e)上单调递增,在(e,+)上单调递减,

f(x)maxf(e).

(2)证明 f(x)

(1)知,f(x)(0e)上单调递增,在(e,+)上单调递减,

0<a<1

x>e时,f(x)a>0

f(x)(e,+)上无零点;

0<x<e时,f(x)

f ae<0f(e)a>0

f(x)(0e)上单调递增,

f(x)(0e)上有且只有一个零点,

综上,f(x)有且只有一个零点.

2.函数f(x)axxln xx1处取得极值.

(1)f(x)的单调区间;

(2)yf(x)m1在定义域内有两个不同的零点,求实数m的取值范围.

解 (1)f(x)的定义域为(0,+)f(x)aln x1

f(1)a10,解得a=-1.

f(x)=-xxln x

f(x)lnx,令f(x)>0,解得x>1;令f(x)<0,解得0<x<1.

f(x)的单调递增区间为(1,+),单调递减区间为(0,1)

(2)yf(x)m1(0,+)内有两个不同的零点,

则函数yf(x)ym1的图象在(0,+)内有两个不同的交点.

(1)知,f(x)(0,1)上单调递减,在(1,+)上单调递增,

f(x)minf(1)=-1f(e)0

作出f(x)图象如图.

由图可知,当-1<m1<0,即-2<m<1时,yf(x)ym1的图象有两个不同的交点.

因此实数m的取值范围是(2,-1)

3(2022·河南名校联盟模拟)已知f(x)(x1)exax3a(aR)

(1)若函数f(x)[0,+∞)上单调递增,求a的取值范围;

(2)ae时,讨论函数f(x)零点的个数.

解 (1)f(x)(x1)exax3a

f(x)x(exax)

函数f(x)[0,+)上单调递增,

f(x)x(exax)0[0,+)上恒成立,

exax0x0.

x0时,则10,即aR

x>0时,则a

构建g(x)(x>0)

g(x)(x>0)

g(x)>0,则x>1

g(x)<0,则0<x<1

g(x)(0,1)上单调递减,在(1,+)上单调递增,

g(x)g(1)e

ae

综上所述,ae.

(2)f(x)(x1)exax3a(x1)

f(x)0

x1exa(x2x1)0

对于exa(x2x1)0

a

构建h(x)

h(x)

h(x)>0,则x>1x<0

h(x)<0,则0<x<1

h(x)(0)(1,+)上单调递增,在(0,1)上单调递减,

h(0)1h(1)h(x)>0,当xR时恒成立,

则当ae时,a有两个根x11x2<0

0<a<e时,a只有一个根x3<0

a0时,a无根.

综上所述,当a0时,f(x)只有一个零点;

0<ae时,f(x)有两个零点.

4(2022·全国乙卷)已知函数f(x)ax--(a1)ln x.

(1)a0时,求f(x)的最大值;

(2)f(x)恰有一个零点,求a的取值范围.

解 (1)a0时,f(x)=-lnx(x0),所以f(x).

x(0,1)时,f(x)0f(x)单调递增;

x(1,+)时,f(x)0f(x)单调递减,

所以f(x)maxf(1)=-1.

(2)f(x)ax(a1)lnx(x0)

f(x)a(x0)

a0时,由(1)可知,f(x)不存在零点;

a0时,f(x)

x(0,1)时,f(x)0f(x)单调递增,

x(1,+)时,f(x)0f(x)单调递减,

所以f(x)maxf(1)a10

所以f(x)不存在零点;

a0时,f(x)

a1时,f(x)0f(x)(0,+)上单调递增,因为f(1)a10

所以函数f(x)恰有一个零点;

a1时,01,故f(x)(1,+)上单调递增,在上单调递减.

因为f(1)a10

所以f(1)0

x0时,f(x),由零点存在定理可知f(x)上必有一个零点,所以a1满足条件,

0a1时,1,故f(x)(0,1)上单调递增,在上单调递减.

因为f(1)a10,所以f(1)0

x时,f(x),由零点存在定理可知f(x)上必有一个零点,即0a1满足条件.

综上,若f(x)恰有一个零点,则a的取值范围为(0,+)

    转藏 分享 献花(0

    0条评论

    发表

    请遵守用户 评论公约

    类似文章 更多